Right here, we have countless book design of multibit deltasigma ad converters and collections to check out. We additionally give variant types and also type of the books to browse. The good enough book, fiction, history, novel, scientific research, as skillfully as various other sorts of books are readily comprehensible here.

As this design of multibit deltasigma ad converters, it ends occurring mammal one of the favored ebook design of multibit deltasigma ad converters collections that we have. This is why you remain in the best website to see the incredible books to have.
embedded designs are employed for transceivers in the field of ADSL solutions and WLAN applications. An area- and power-efficient realization of a converter is mandatory to remain competitive in the market. The right choice for the converter topology and architecture needs to be done very carefully to result in a competitive FOM. The book begins with a brief overview of basic concepts about ADSL and WLAN to understand the ADC requirements. At architectural level, issues on different modulator topologies are discussed employing the provided technology node. The design issues are pointed out in detail for modern digital CMOS technologies, beginning with 180nm followed by 130nm and going down to 65nm feature size. Beside practical aspects, challenges to mixed-signal design level are addressed to optimize the converters in terms of consumed chip area, power consumption and design for high yield in volume production. Thus, careful considerations on circuit- and architectural-level are performed by introducing a dynamic-biasing technique, a feed-forward approach and a resolution in time instead of amplitude resolution.

Analog Circuit Design-Michiel Steyaert 2007-05-08
In the 11th edition in this successful series, the topics are structured-mixed-mode design, multi-bit sigma-delta converters and short range RF circuits. The book provides valuable information and excellent overviews of analogue circuit design, CAD and RF systems.

Delta-Sigma Modulators

Structured Analog CMOS Design-Danica Stefanovic 2008-10-20 Structured Analog CMOS Design describes a structured analog design approach that makes it possible to simplify complex analog design problems and develop a design strategy that can be used for the design of large number of analog cells. It intentionally avoids treating the analog design as a
mathematical problem, developing a design procedure based on the understanding of device physics and approximations that give insight into parameter interdependences. The basic design concept consists in analog cell partitioning into the basic analog structures and sizing of these basic analog structures in a predefined procedural design sequence. The procedural design sequence ensures the correct propagation of design specifications, the verification of parameter limits and the local optimization loops. The proposed design procedure is also implemented as a CAD tool that follows this book.

Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters

Vincenzo Peluso 2013-03-09 Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters investigates the feasibility of designing Delta-Sigma Analog to Digital Converters for very low supply voltage (lower than 1.5V) and low power operation in standard CMOS processes. The chosen technique of implementation is the Switched Opamp Technique which provides Switched Capacitor operation at low supply voltage without the need to apply voltage multipliers or low VtMOST devices. A method of implementing the classic single loop and cascaded Delta-Sigma modulator topologies with half delay integrators is presented. Those topologies are studied in order to find the parameters that maximise the performance in terms of peak SNR. Based on a linear model, the performance degradations of higher order single loop and cascaded modulators, compared to a hypothetical ideal modulator, are quantified. An overview of low voltage Switched Capacitor design techniques, such as the use of voltage multipliers, low VtMOST devices and the Switched Opamp Technique, is given. An in-depth discussion of the present status of the Switched Opamp Technique covers the single-ended Original Switched Opamp Technique, the Modified Switched Opamp
Technique, which allows lower supply voltage operation, and differential implementation including common mode control techniques. The restrictions imposed on the analog circuits by low supply voltage operation are investigated. Several low voltage circuit building blocks, some of which are new, are discussed. A new low voltage class AB OTA, especially suited for differential Switched Opamp applications, together with a common mode feedback amplifier and a comparator are presented and analyzed. As part of a systematic top-down design approach, the non-ideal charge transfer of the Switched Opamp integrator cell is modeled, based upon several models of the main opamp non-ideal characteristics. Behavioral simulations carried out with these models yield the required opamp specifications that ensure that the intended performance is met in an implementation. A power consumption analysis is performed. The influence of all design parameters, especially the low power supply voltage, is highlighted.

Design guidelines towards low power operation are distilled. Two implementations are presented together with measurement results. The first one is a single-ended implementation of a Delta-Sigma ADC operating with 1.5V supply voltage and consuming 100 &mgr;W for a 74 dB dynamic range in a 3.4 kHz bandwidth. The second implementation is differential and operates with 900 mV. It achieves 77 dB dynamic range in 16 kHz bandwidth and consumes 40 &mgr;W. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters is essential reading for analog design engineers and researchers.

Design and Implementation on High-order Mismatch-shaped Multibit Delta-sigma D/a Converters-Li You 2014

As the rapid evolution in semiconductor technology, transistors' feature size has reached to 22nm and below, which brings great impact to analog and mixed-signal circuits. As the significant bridge connecting the analog
world and digital system, data converter suffers from nonlinearity resulting from mismatch among its unit components. The smaller transistors are, the larger relative mismatch among them becomes. However, using larger transistors leads to more area cost and power consumption. Therefore, researchers have been working hard on how to alleviate the mismatch issue. In recent years, Dynamic Element Matching (DEM) becomes a popular approach that can significantly improve linearity, especially Spurious-free Dynamic Range (SFDR), of a data converter system. The basic idea of DEM is to shuffle the usage pattern of unit elements so that the mismatch error is no longer correlated to the input signal. Thus, DAC's linearity will be improved. Generally, DEM Nyquist-rate DAC does mismatch scrambling, which smooths distortions resulting from mismatch into white noise. DEM Delta-Sigma DAC does mismatch shaping, which pushes distortions away from the signal band, typically lower frequencies. In this thesis, we focused on mismatch-shaping Delta-Sigma DACs. Two of those various algorithms are implemented logically and physically. With placement and routing information, we got more accurate result on the speed and power dissipation. The comparison shows the tradeoff among number of quantization levels, mismatch-shaping order, and hardware complexity.

Understanding Delta-Sigma Data Converters
Shanthi Pavan 2017-01-24
This new edition introduces operation and design techniques for Sigma-Delta converters in physical and conceptual terms, and includes chapters which explore developments in the field over the last decade. Includes information on MASH architectures, digital-to-analog converter (DAC) mismatch and mismatch shaping. Investigates new topics including continuous-time ΔΣ analog-to-digital converters (ADCs) principles and designs, circuit design for both continuous-time and discrete-time ΔΣ ADCs, decimation and interpolation.
Analog-Digital Converters for Industrial Applications Including an Introduction to Digital-Analog Converters - Frank Ohnhäuser

2015-07-01 This book offers students and those new to the topic of analog-to-digital converters (ADCs) a broad introduction, before going into details of the state-of-the-art design techniques for SAR and DS converters, including the latest research topics, which are valuable for IC design engineers as well as users of ADCs in applications. The book then addresses important topics, such as correct connectivity of ADCs in an application, the verification, characterization and testing of ADCs that ensure high-quality end products. Analog-to-digital converters are the central element in any data processing system and regulation loops such as modems or electrical motor drives. They significantly affect the performance and resolution of a system or end product. System development engineers need to be familiar with the performance parameters of the converters and understand the advantages and disadvantages of the various architectures. Integrated circuit development engineers have to overcome the problem of achieving high performance and resolution with the lowest possible power dissipation, while the digital circuitry generates distortion in supply, ground and substrate. This book explains the connections and gives suggestions for obtaining the highest possible resolution. Novel trends are illustrated in the design of analog-to-digital converters based on successive approximation and the difficulties in the development of continuous-time delta-sigma modulators are also discussed.

Analog Circuit Design - Willy M.C. Sansen

2013-03-09 This new book on Analog Circuit Design contains the revised contributions of all the tutorial speakers of the eight
workshop AACD (Advances in Analog Circuit Design), which was held at Nice, France on March 23-25, 1999. The workshop was organized by Yves Leduc of TI Nice, France. The program committee consisted of Willy Sansen, K.U.Leuven, Belgium, Han Huijsing, T.U.Delft, The Netherlands and Rudy van de Plassche, T.U.Eindhoven, The Netherlands. The aim of these AACD workshops is to bring together a restricted group of about 100 people who are personally advancing the frontiers of analog circuit design to brainstorm on new possibilities and future developments in a restricted number of fields. They are concentrated around three topics. In each topic six speakers give a tutorial presentation. Eighteen papers are thus included in this book. The topics of 1999 are: (X)DSL and other communication systems RF MOST models Integrated filters and oscillators The other topics, which have been covered before, are: 1992 Operational amplifiers A-D Converters Analog CAD 1993 Mixed-mode A+D design Sensor interfaces Communication circuits 1994 Low-power low-voltage design Integrated filters Smart power 1995 Low-noise low-power low-voltage design Mixed-mode design with CAD tools Voltage, current and time references 1996 RF CMOS circuit design Bandpass sigma-delta and other data converters Translinear circuits 1997 RF A-D Converters Sensor and actuator interfaces Low-noise oscillators, PLL’s and synthesizers 1998 I-Volt electronics Design and implementation of mixed-mode systems Low-noise amplifiers and RF power amplifiers for telecommunications

Trade-Offs in Analog Circuit Design - Chris Toumazou 2004-08-03 As the frequency of communication systems increases and the dimensions of transistors are reduced, more and more stringent performance requirements are placed on analog circuits. This is a trend that is bound to continue for the foreseeable future and while it does, understanding performance trade-offs will

design-of-multibit-deltasigma-ad-converters

November 30, 2021 by guest
constitute a vital part of the analog design process. It is the insight and intuition obtained from a fundamental understanding of performance conflicts and trade-offs, that ultimately provides the designer with the basic tools necessary for effective and creative analog design. Trade-offs in Analog Circuit Design, which is devoted to the understanding of trade-offs in analog design, is quite unique in that it draws together fundamental material from, and identifies interrelationships within, a number of key analog circuits. The book covers ten subject areas: Design methodology, Technology, General Performance, Filters, Switched Circuits, Oscillators, Data Converters, Transceivers, Neural Processing, and Analog CAD. Within these subject areas it deals with a wide diversity of trade-offs ranging from frequency-dynamic range and power, gain-bandwidth, speed-dynamic range and phase noise, to tradeoffs in design for manufacture and IC layout. The book has by far transcended its original scope and has become both a designer's companion as well as a graduate textbook. An important feature of this book is that it promotes an intuitive approach to understanding analog circuits by explaining fundamental relationships and, in many cases, providing practical illustrative examples to demonstrate the inherent basic interrelationships and trade-offs. Trade-offs in Analog Circuit Design draws together 34 contributions from some of the world's most eminent analog circuits-and-systems designers to provide, for the first time, a comprehensive text devoted to a very important and timely approach to analog circuit design.

Multi-Mode / Multi-Band RF Transceivers for Wireless Communications - Gernot Hueber 2011-02-22
Summarizes cutting-edge physical layer technologies for multi-mode wireless RF transceivers. Includes original contributions from distinguished researchers and professionals. Covers cutting-edge physical layer technologies for multi-mode
wireless RF transceivers. Contributors are all leading researchers and professionals in this field.

Analog Circuit Design - Rudy J. van de Plassche 2013-03-09
This book contains the extended and revised editions of all the talks of the ninth AACD Workshop held in Hotel Bachmair, April 11 - 13 2000 in Rottach-Egern, Germany. The local organization was managed by Rudolf Koch of Infineon Technologies AG, Munich, Germany. The program consisted of six tutorials per day during three days. Experts in the field presented these tutorials and state of the art information is communicated. The audience at the end of the workshop selects program topics for the following workshop. The program committee, consisting of Johan Huijsing of Delft University of Technology, Willy Sansen of Katholieke Universiteit Leuven and Rudy van de Plassche of Broadcom Netherlands BV Bunnik elaborates the selected topics into a three-day program and selects experts in the field for presentation. Each AACD Workshop has given rise to publication of a book by Kluwer entitled "Analog Circuit Design". A series of nine books in a row provides valuable information and good overviews of all analog circuit techniques concerning design, CAD, simulation and device modeling. These books can be seen as a reference to those people involved in analog and mixed signal design. The aim of the workshop is to brainstorm on new and valuable design ideas in the area of analog circuit design. It is the hope of the program committee that this ninth book continues the tradition of emerging contributions to the design of analog and mixed signal systems in Europe and the rest of the world.

Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio - Alonso Morgado 2011-09-15
This book presents innovative solutions for the implementation of Sigma-Delta Modulation (SDM) based Analog-to-Digital
Conversion (ADC), required for the next generation of wireless hand-held terminals. These devices will be based on the so-called multi-standard transceiver chipsets, integrated in nanometer CMOS technologies. One of the most challenging and critical parts in such transceivers is the analog-digital interface, because of the assorted signal bandwidths and dynamic ranges that can be required to handle the A/D conversion for several operation modes. This book describes new adaptive and reconfigurable SDM ADC topologies, circuit strategies and synthesis methods, specially suited for multi-standard wireless telecom systems and future Software-defined-radios (SDRs) integrated in nanoscale CMOS. It is a practical book, going from basic concepts to the frontiers of SDM architectures and circuit implementations, which are explained in a didactical and systematic way. It gives a comprehensive overview of the state-of-the-art performance, challenges and practical solutions, providing the necessary insight to implement successful design, through an efficient design and synthesis methodology. Readers will learn a number of practical skills – from system-level design to experimental measurements and testing.

Design and Implementation of a Multi-bit [delta Sigma] Modulator in 0.5 [ohm] CMOS Process for 600 KHz A/D Conversion with 10 MHz Sampling Rate-Partha Sarathi Basu 2006

Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion-James A. Cherry 2006-04-18 Among analog-to-digital converters, the delta-sigma modulator has cornered the market on high to very high resolution converters at moderate speeds, with typical applications such as digital audio and instrumentation. Interest has recently increased in delta-sigma circuits built with a continuous-time loop filter rather than the more common
switched-capacitor approach. Continuous-time delta-sigma modulators offer less noisy virtual ground nodes at the input, inherent protection against signal aliasing, and the potential to use a physical rather than an electrical integrator in the first stage for novel applications like accelerometers and magnetic flux sensors. More significantly, they relax settling time restrictions so that modulator clock rates can be raised. This opens the possibility of wideband (1 MHz or more) converters, possibly for use in radio applications at an intermediate frequency so that one or more stages of mixing might be done in the digital domain. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits covers all aspects of continuous-time delta-sigma modulator design, with particular emphasis on design for high clock speeds. The authors explain the ideal design of such modulators in terms of the well-understood discrete-time modulator design problem and provide design examples in Matlab. They also cover commonly-encountered non-idealities in continuous-time modulators and how they degrade performance, plus a wealth of material on the main problems (feedback path delays, clock jitter, and quantizer metastability) in very high-speed designs and how to avoid them. They also give a concrete design procedure for a real high-speed circuit which illustrates the tradeoffs in the selection of key parameters. Detailed circuit diagrams, simulation results and test results for an integrated continuous-time 4 GHz band-pass modulator for A/D conversion of 1 GHz analog signals are also presented. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits concludes with some promising modulator architectures and a list of the challenges that remain in this exciting field.

Circuits and Systems Tutorials-Chris Toumazou 1995-12-11 Available for the
first time in paperback, this ground-breaking industry textbook is heralded as a first in its state-of-the-art coverage of the most important areas emerging in circuits and systems. It is compiled from course material used in a suite of one-day tutorials on circuits and systems designed expressly for engineers and research scientists who want to explore subjects outside, but related to, their immediate fields. Authored by 50 circuits and systems experts, this volume fosters a fundamental and authoritative understanding of each subject.

Matlab - Emilson Pereira Leite
2010

Portable Design - 2004

Delta-Sigma Modulators -
George I. Bourdopoulos 2003
This important book deals with the modeling and design of higher-order single-stage delta-sigma modulators. It provides an overview of the architectures, the quantizer models, the design techniques and the implementation issues encountered in the study of the delta-sigma modulators. A number of applications are discussed, with emphasis on use in the design of analog-to-digital converters and in frequency synthesis. The book is education- rather than research-oriented, containing numerical examples and unsolved problems. It is aimed at introducing the final-year undergraduate, the graduate student or the electronic engineer to this field.

Contents: Analog to Digital Conversion; ou Modulators OCo Architectures; Single-Bit Single-Stage ou Modulators, Modeling and Design; Implementation of ou Modulators; Practical Limitations of ou Modulators; Stabilization and Suppression of Tones for the Higher-Order Single-Stage ou Modulators; Decimation, Interpolation and Converters; Applications.

Readership: Final-year undergraduates; graduate students; electrical, electronic and systems engineers.

Analog Circuit Design - Johan Huijsing 2013-04-17 Many
interesting design trends are shown by the six papers on operational amplifiers (Op Amps). Firstly, there is the line of stand-alone Op Amps using a bipolar IC technology which combines high-frequency and high voltage. This line is represented in papers by Bill Gross and Derek Bowers. Bill Gross shows an improved high-frequency compensation technique of a high quality three stage Op Amp. Derek Bowers improves the gain and frequency behaviour of the stages of a two-stage Op Amp. Both papers also present trends in current-mode feedback Op Amps. Low-voltage bipolar Op Amp design is presented by leroen Fonderie. He shows how multipath nested Miller compensation can be applied to turn rail-to-rail input and output stages into high quality low-voltage Op Amps. Two papers on CMOS Op Amps by Michael Steyaert and Klaas Bult show how high speed and high gain VLSI building blocks can be realised. Without departing from a single-stage OTA structure with a folded cascode output, a thorough high frequency design technique and a gain-boosting technique contributed to the high-speed and the high-gain achieved with these Op Amps. Finally, Rinaldo Castello shows us how to provide output power with CMOS buffer amplifiers. The combination of class A and AB stages in a multipath nested Miller structure provides the required linearity and bandwidth.

High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing-Pieter Harpe
2014-07-23 This book is based on the 18 tutorials presented during the 23rd workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, serving as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

High-Level Modeling and Synthesis of Analog Circuits
Various approaches for finding optimal values for the parameters of analog cells have made their entrance in commercial applications. However, a larger impact on the performance is expected if tools are developed which operate on a higher abstraction level and consider multiple architectural choices to realize a particular functionality. This book examines the opportunities, conditions, problems, solutions and systematic methodologies for this new generation of analog CAD tools.

An Architecture for Multibit Log-domain Delta-sigma Modulators and Low-power CMOS Implementation Targeting 10-12 Bit Resolution
Mohamed Shaheen 2015

"Biopotential sensory interfaces in biomedical devices require high-resolution analog-to-digital converters (ADCs) operating at low-to-medium speeds. Additionally, the low-power requirements of such systems are critical and are increasingly stringent. Low-power operation is necessary in order to increase the battery life of implantable devices. Lowering of supply voltages is driven by the increasing reliance on digital processing in computationally-extensive implantable and portable biomedical devices; as supply voltages are lowered, digital power consumption is reduced. Moreover, to extend the battery life, these devices must be capable of operating from supply voltages ranging from the nominal VDD down to the end-of-life (EOL) battery voltage. This thesis explores new techniques for the design of low-power low-voltage ADCs for high-resolution biomedical signal acquisition in portable devices. Subthreshold circuit design techniques, and in particular log-domain circuit techniques in Delta Sigma modulators, are utilized to realize these design objectives. Specifically, this work investigates the following: 1. Multibit Log-Domain Delta-Sigma
Modulators: Previously reported log-domain Delta-Sigma modulators were limited to 1-bit quantization and hence could not benefit from the advantages associated with multibit quantization (namely, reduced in-band quantization noise, and increased modulator stability). This thesis explores the challenges of multibit quantization and digital-to-analog conversion in the log-domain, and presents a novel multibit log-domain Delta-Sigma modulator, practical for CMOS implementation. It demonstrates the equivalence of the designed system to classical, internally-linear modulators. Furthermore, SIMULINK models of log-domain Delta-Sigma modulator circuits are proposed, and the effects of various circuit non-idealities on the performance of the proposed multibit log-domain Delta-Sigma modulator architecture are investigated.

2. Low-Distortion Low-Noise Loop-Filter Circuit Implementation: The realization of log-domain Delta-Sigma modulators targeting high-resolution applications necessitates a minimization of distortion and noise in the log-domain loop-filter. In this work, low-distortion log-domain circuit blocks are presented. Furthermore, the design trends of log-domain circuits are investigated and a noise-optimization method is proposed to meet the targeted high-resolution performance while maintaining low-power operation. The necessity of the low-distortion log-domain circuits and the design tradeoffs are validated through circuit-level simulations. Additionally, a low-noise current output DAC is proposed for the log-domain Delta-Sigma modulator. A class AB multibit log-domain Delta-Sigma modulator prototype was designed and fabricated in 0.13 [μm] CMOS technology. In simulation, the proposed modulator achieves 10.47-bit signal-to-noise-and-distortion-ratio (SNDR) over a 10 kHz bandwidth with a 0.84 Vpp differential signal input, while operating from a 0.8 V supply and consuming a total power of 46.7 [μW]. Results of the fabricated prototype indicate dc-bias instability within the Delta-Sigma.
modulator's integrator outputs and, through testing of individual components, validates the operation of various circuits within the modulator. By proposing a novel multibit log-domain Delta-Sigma modulator architecture and low-distortion log-domain circuits, and by presenting the first class AB implementation of log-domain Delta-Sigma modulators, the presented modulator achieves low-power high-resolution operation at aggressively low supply voltages and with one of the largest reported input-signal-swing to supply-voltage ratios. Furthermore, by presenting an optimization procedure for the various design parameters involved, this work aims at easing the incorporation of log-domain circuit techniques in Delta-Sigma modulator applications."

A Multi-bit Delta-sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency

Kentaro Yamamoto 2007

The analysis and design of a discrete-time fully-tunable multi-bit delta-sigma modulator are presented in this thesis. The fourth-order CRFF (Cascade of resonators with feedforward) structure is employed with a four-bit quantizer whose nonlinearity is compensated using digital correction. The design of a tunable delta-sigma performance analysis of data converters. The focus is put on sustainable data conversion. Sustainability has become a public issue that industries and users can not ignore. Devising environmentally friendly solutions for data conversion designing, modeling and testing is nowadays a requirement that researchers and practitioners must consider in their activities. This book presents the outcome of the IWADC workshop 2011, held in Orvieto, Italy.
modulator for an integrated-circuit (IC) implementation involves some challenges such as coefficient quantization and the realization of coefficient programmability. The tunable modulator was designed and fabricated in the 0.18-mum CMOS technology. A peak SNDR of 96 dB was achieved at an OSR of 96 (270-kHz bandwidth) with a sampling frequency of 50 MHz and 108-mW power consumption was achieved for configurations from the lowpass configuration to the highpass configuration through the bandpass configuration based on the simulation results. These simulated results suggest that the tunable modulator is competitive with conventional bandpass delta-sigma modulators with a fixed passband in terms of the figure of merit (FOM).

Delta-Sigma Data Converters-Steven J. Norsworthy 1996-10-28 This comprehensive guide offers a detailed treatment of the analysis, design, simulation and testing of the full range of today's leading delta-sigma data converters. Written by professionals experienced in all practical aspects of delta-sigma modulator design, Delta-Sigma Data Converters provides comprehensive coverage of low and high-order single-bit, bandpass, continuous-time, multi-stage modulators as well as advanced topics, including idle-channel tones, stability, decimation and interpolation filter design, and simulation.

Oversampled Delta-Sigma Modulators-Mücahit Kozak 2007-05-08 Oversampled Delta-Sigma Modulators: Analysis, Applications, and Novel Topologies presents theorems and their mathematical proofs for the exact analysis of the quantization noise in delta-sigma modulators. Extensive mathematical equations are included throughout the book to analyze both single-stage and multi-stage architectures. It has been proved that appropriately set initial conditions generate tone free output, provided that the modulator order is at least three. These results are applied to the design of a
Fractional-N PLL frequency synthesizer to produce spurious free RF waveforms. Furthermore, the book also presents time-interleaved topologies to increase the conversion bandwidth of delta-sigma modulators. The topologies have been generalized for any interleaving number and modulator order. The book is full of design and analysis techniques and contains sufficient detail that enables readers with little background in the subject to easily follow the material in it.

Minimizing Spurious Tones in Digital Delta-Sigma Modulators - Kaveh Hosseini 2011-06-25 This book describes several Digital Delta-Sigma Modulator (DDSM) architectures, including multi stage noise shaping (MASH), error feedback modulator (EFM) and single quantizer (SQ)-DDSM modulators, with a focus on predicting and maximizing their cycle lengths. The authors aim to demystify an important aspect of these particular DDSM structures, namely the existence of spurs resulting from the inherent periodicity of DDSMs with constant inputs. Simulink and MATLAB models and code are presented in Chapters 2–5 to enable the reader to reproduce the results in this work and to explore further. These examples will also be helpful for first-time designers of DDSMs.

Delta-Sigma Data Converters - Steven J. Norsworthy 1997 This comprehensive guide offers a detailed treatment of the analysis, design, simulation and testing of the full range of today's leading delta-sigma data converters. Written by professionals experienced in all practical aspects of delta-sigma modulator design, Delta-Sigma Data Converters provides comprehensive coverage of low and high-order single-bit, bandpass, continuous-time, multi-stage modulators as well as advanced topics, including idle-channel tones, stability, decimation and interpolation filter design, and simulation.
Delta-Sigma Modulators
George I Bourdopoulos 2003
This important book deals with the modeling and design of higher-order single-stage delta-sigma modulators. It provides an overview of the architectures, the quantizer models, the design techniques and the implementation issues encountered in the study of the delta-sigma modulators. A number of applications are discussed, with emphasis on use in the design of analog-to-digital converters and in frequency synthesis. The book is education- rather than research-oriented, containing numerical examples and unsolved problems. It is aimed at introducing the final-year undergraduate, the graduate student or the electronic engineer to this field.

CHIPS 2020 VOL. 2-Bernd Höflinger 2015-09-19
The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore’s Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising Moore-like exponential growth sustainable through to the 2030s.

Advances in Analog and RF IC Design for Wireless
Communication Systems - Gabriele Manganaro
2013-05-13 Advances in Analog and RF IC Design for Wireless Communication Systems gives technical introductions to the latest and most significant topics in the area of circuit design of analog/RF ICs for wireless communication systems, emphasizing wireless infrastructure rather than handsets. The book ranges from very high performance circuits for complex wireless infrastructure systems to selected highly integrated systems for handsets and mobile devices. Coverage includes power amplifiers, low-noise amplifiers, modulators, analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), and even single-chip radios. This book offers a quick grasp of emerging research topics in RF integrated circuit design and their potential applications, with brief introductions to key topics followed by references to specialist papers for further reading. All of the chapters, compiled by editors well known in their field, have been authored by renowned experts in the subject. Each includes a complete introduction, followed by the relevant most significant and recent results on the topic at hand. This book gives researchers in industry and universities a quick grasp of the most important developments in analog and RF integrated circuit design. Emerging research topics in RF IC design and its potential application Case studies and practical implementation examples Covers fundamental building blocks of a cellular base station system and satellite infrastructure Insights from the experts on the design and the technology trade-offs, the challenges and open questions they often face References to specialist papers for further reading

Wideband Continuous-time ΣΔ ADCs, Automotive Electronics, and Power Management - Andrea Baschirotto 2016-08-12 This book is based on the 18 tutorials presented during the 25th workshop on Advances in Analog Circuit Design. Expert designers present readers
with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of continuous-time sigma-delta modulators, automotive electronics, and power management. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

Conference Proceedings-1994

High Speed and Wide Bandwidth Delta-Sigma ADCs-Muhammed Bolatkale 2014-05-27 This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nano meter-CMOS processes. The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators. Readers will be enabled to implement ADCs as continuous-time delta-sigma (CTΔΣ) modulators, offering simple resistive inputs, which do not require the use of power-hungry input buffers, as well as offering inherent anti-aliasing, which simplifies system integration. The authors focus on the design of high speed and wide-bandwidth ΔΣMs that make a step in bandwidth range which was previously only possible with Nyquist converters. More specifically, this book describes the stability, power efficiency and linearity limits of ΔΣMs, aiming at a GHz sampling frequency.

Computer-Aided Design of Analog Circuits and Systems-L. Richard Carley 2012-12-06 Computer-Aided Design of Analog Circuits and Systems brings together in one place important contributions and state-of-the-art research results in the rapidly advancing area of computer-aided design of analog circuits and systems. This book serves as an excellent reference, providing
insights into some of the most important issues in the field.

Delta-sigma Data Converters for Broadband Digital Communications
Anas A. Hamoui 2004
Accordingly, to meet the stringent ADC specifications imposed by emerging broadband communication applications, this thesis explores the following: (1) High-Speed High-Resolution Delta-Sigma (DeltaSigma) ADCs: Oversampling DeltaSigma ADCs can achieve a high-resolution data conversion in low-speed applications using low-accuracy analog components. However, extending these ADCs to high-speed applications requires lowering the oversampling ratio (OSR), due to both power and CMOS technology limitations. Unfortunately, this significantly limits the efficiency of a DeltaSigma ADC in achieving a high-resolution analog/digital (A/D) conversion. Therefore, this thesis presents several techniques to enable the OSR lowering in high-speed

DeltaSigma ADCs without compromising the resolution. Specifically, a low-distortion single-stage architecture is proposed for high-order multibit DeltaSigma modulators. Furthermore, a dynamic-element-matching (DEM) technique, called Pseudo Data-Weighted-Averaging (Pseudo DWA), with reduced tone behavior at a low OSR is proposed for the linearization of the digital-to-analog converter (DAC) in a multibit DeltaSigma modulator. (2) Low-Voltage Switched-Capacitor (SC) Circuit Implementation: To demonstrate the practicality of the proposed modulator architecture and DAC-linearization technique when the OSR and the supply voltage are limited by the technology, a DeltaSigma modulator prototype is designed using SC circuit techniques and fabricated in a 0.18-mum standard digital CMOS process. When operated from a 1.8-V supply, it achieves a 13-bit spurious-free dynamic range (SFDR) and a 12-bit signal-to-noise ratio (SNR) over a 3-MS/s conversion bandwidth with a 1.85-V pp input-signal range.
The analog and digital power consumptions are, respectively, 32.4 mW and 12.6 mW. The on-chip references dissipate 14.4 mW. Accordingly, this DeltaSigma modulator was one of the few early-reported CMOS DeltaSigma modulators targeting high-speed (≥2 MS/s) high-resolution (≥12 bits) applications and operating from a low supply voltage (≤1.8 V). Furthermore, its measured performance compared favourably to the previously-reported state-of-the-art DeltaSigma modulators. Ironically, the significance of analog integrated-circuit design is growing more prominent in today's "digital" communication age due, in part, to data converters.

Specifically, the proliferation of broadband digital communication applications is stimulating the evolving research towards the development of analog-to-digital converters (ADCs) with higher speeds and higher resolutions. These ADCs must be implemented in standard digital CMOS processes for higher system integration and lower fabrication costs. However, in nano-scale CMOS technologies, the decreasing supply voltages and the shrinking devices with poor analog-processing capabilities complicate the low-power design of high-resolution analog circuits.